If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2-9=0
a = 21; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·21·(-9)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{21}}{2*21}=\frac{0-6\sqrt{21}}{42} =-\frac{6\sqrt{21}}{42} =-\frac{\sqrt{21}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{21}}{2*21}=\frac{0+6\sqrt{21}}{42} =\frac{6\sqrt{21}}{42} =\frac{\sqrt{21}}{7} $
| 6m-6=8+4 | | 50x=150-45x | | 20÷x=1/3 | | 0.3z-0.03=0.04z | | 2^2x=0.125 | | |4x-2|+7=37 | | 1=0.025x^2+0.1 | | 1=0.025x^2+0.1,x | | -4(7x-6)+1=-28x+25 | | 0.18(y-9)+0.16y=0.14y-0.01(40) | | Y=50-1/2x= | | 3–2x+4x+6=19 | | -6x+6=-12x+8 | | 8x+20=-30+42 | | 11x2-21x=0 | | Y=-1/6x-7;(16,0) | | 350=x-0.1x | | 5(y-10)=3y | | 32+3x=146 | | 90=0.20d+5 | | 45a=7.8 | | (9x)+(6x)=98 | | (7x+5)(7x+5)=50 | | (20-r)^(0.5)=r | | 4v=16/2 | | 4q=16/12 | | -4=3x-27 | | 50=50-25x0=2=2 | | 5s+s=360 | | 1/5(2x-5)=6 | | 2.3x-6=1.9 | | 15-x=x+5 |